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A nonlinear two-dimensional shell model of Timoshenko type [I, 2] is here generalized 
by the conservation of the transverse normal stress. The deformation in the generalized 
model is subject to a kinematic relation, which provides uniformity throughout the thickness 
in the transverse tension-compression deformation, and we use the method of [3, 4] for ex- 
plicitly isolating the finite-rotation field. 

As a result, the three-dimensional nonlinear problem for a shell is split up into two 
problems solved in sequence: a two-dimensional nonlinear problem defining the longitudinal 
components of the stress and strain tensors and a one-dimensional linear problem in terms of 
the transverse coordinate that defines the transverse components of those tensors. 

A difference from [I, 2, 4] is that the differential order of the two-dimensional non- 
linear problem is 12, while the number of natural contour conditions is six. 

We use the symbols of [4]. The upper-case Latin subscripts take the values 1, 2, and 3, 
while the lower-case ones take the values I and 2. 

I. Formulation of the Two-Dimensional Kinematic and Dynamic Equations. Let tM be a 
three-dimensional curvilinear coordinate system related to the base surface b of the shell 
(the parameters tl and t2 are the internal coordinates of this surface, while parameter t3 is 
the coordinate normal to it). This coordinate system is put into correspondence with two 
initial bases: a three-dimensional one A(N)(tM) defined in the entire volume of the shell and 
a two-dimensional one a(N)(t m) defined on the basis surface. 

Deformation of the shell transforms the initial bases into the corresponding instan- 
taneous bases A{N}(t M) and a{N}(t m) (a possible dependence on time is supposed but not ex- 
plicitly indicated). From the overall transformation, we isolate the rigid rotation that 
generates the rotated bases A[N](t M) and a[N](tm). The length of the normal vector a(3) is 
taken as constant by definition (not necessarily unit vector). During the deformation, this 
vector is transformed to the instantaneous vector a{3}, which is not normal to the deformed 
basis surface and which has a length differing from the initial one. The corresponding 
turned vector a[3 ] is taken as collinearwith the instantaneous one by definition, so 

a~8 ) = (a88 ~ u[aa])a[a] , {a [a l l la{8}=> 'a[S] l la{a)} .  

The scalar function u[33](t m) is a measure of the elongation of the normal vector on defor- 
mation. 

Let the deformation at any instant be subject to the kinematic relation 

A(s ) = a(8 }, (1.1) 

which provides transverse tension-compression deformation homogeneous throughout the thick- 
ness of the shell. A consequence of (1.1) is that the field of displacements is linearly 
distributed over the normal coordinate: 

U = u + t3w, w = a~ -- a(~) (1.2) 

[U(tm) is the displacement field for points in the basis plane]. From (1.4) of [4], we get 
the deformation field corresponding to the distribution of (1.2): 

U[n ] = u[~] ~ t3Wln ], U[3 ] = u[3 ]. (I .3) 

Here U[N ] (tm) and W[n] (t m) are the two-dimensional strain fields defined by 

u[n! = O u - -  ( l~)v•  + (t/2)v• 
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W[ n] = V[n]Xa[3]  + 0nO[a]'  u[31 = a(a~ - -  a[31 ' V[n] = ( l ~ ) ( 0 n V  + (l]2)vXOnv)' ( 1 . 4 )  
I = t + ( t~)v.v  

(V[n](tm) is the field of bends in the coordinate lines tm = const generated by the rigid- 
rotation field V(tm) , while 3 n is the operator for partial differentiation with respect to 

tn). 

The variational principle representing the principle of virtual displacements for the 
shell with the kinematic relation of (1.1) employs two-dimensional dynamic equations defined 
on the basis surface b: 

V ( n ) x ( n ) +  I = 0, V(n)z (n) - -  x(3) + h = 0, a { ~ •  (N) + Ona~)•  = 0; ( i . 5 )  

together with boundary conditions defined on the contour c 

[(e(~).a(n))X(n) - -  f(v)]-V0 u = 0, [(e(v).a(n))z(n) - -  h(v)]-V0W = 0; ( 1 . 6 )  

a formula for the surface density of the virtual strain energy 

W3 = x(N) ' (V0U[N] - -  VoXU(N )) + z(n) ' (V0W[n]  - -  u  ( 1 . 7 )  

and e q u a t i o n s  d e f i n i n g  the  moments of  t h e  f o r c e  f i e l d s  in  t h e  s h e l l :  

b+ b+ 

x( N ) ~ _ _ I  y x(N)]dt3, z(n)=-=- | ~ x(n)]t3dt 3, 
1 7 b_ b_ 

b+ b+ 

] 
b_  b _  

b+ b+ 

�9 I" 1 ~  F(viJt3dt3" h =  71 [FJt a _~ 0a (X(3)jta)] dta, h(v) = ~- 
b_  b-- 

Here  V(n ) i s  t h e  o p e r a t o r  f o r  c o v a r i a n t  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to  t n in  t h e  i n i -  
t i a l  b a s i s  a ( N ) ,  e ( v  ) i s  t h e  f i e l d  o f  u n i t  n o r m a l s  t o  t he  end s u r f a c e  o f  t he  s h e l l ,  v0 i s  
t he  t w o - d i m e n s i o n a l  v i r t u a l - r o t a t i o n  f i e l d ,  V0 i s  t h e  t o t a l - v a r i a t i o n  o p e r a t o r ,  j and J a r e  
t h e  J a c o b i a n s  o f  t h e  b a s e s  a(N ) and A(N ) c o r r e s p o n d i n g l y ,  t3 = b_ and t3 = b+ a r e  t he  e q u a -  
t i o n s  f o r  t h e  e x t e r n a l  s u r f a c e s  o f  the  s h e l l ,  x ( N ) ( t  M) i s  t h e  s t r e s s  f i e l d  in  t h e  s h e l l ,  
F ( t  M) i s  t h e  f i e l d  b u l k  f o r c e s  ( i n c l u d i n g  t h e  i n e r t i a l  o n e s ) ,  and F ( v ) ( t  M) i s  t he  f i e l d  of  
t h e  e x t e r n a l  f o r c e s  d i s t r i b u t e d  o v e r  t he  end s u r f a c e .  

E q u a t i o n s  ( 1 . 8 )  d e f i n e  t h e  f o l l o w i n g :  t h e  t w o - d i m e n s i o n a l  f i e l d  f o r  t he  i n t e r n a l  f o r c e s  
x kN)," ~ t h e  t w o - d i m e n s i o n a l  f i e l d  f o r  t he  i n t e r n a l  moments z ( n ) ,  t he  t w o - d i m e n s i o n a l  f i e l d s  
f o r  the  e x t e r n a l  f o r c e s  f and f ( v )  ( i n c l u d i n g  t h e  i n e r t i a l  o n e s ) ,  and t h e  t w o - d i m e n s i o n a l  
f i e l d s  f o r  t h e  e x t e r n a l  moments h and h ( v  ) ( i n c l u d i n g  the  i n e r t i a l  o n e s ) .  

The s econd  of  t he  v e c t o r  e q u a t i o n s  in  ( 1 . 5 )  i s  c o n v e r t e d  to  two e q u a t i o n s  by means of  
the  t h i r d :  

(V(n)z(n)--~8)-J-h)-a [8] = 0, 

V(n)(a~• + aln}• = 0, 

the first of which is the condition for equilibrium for the moments in the direction of the 
vector a{3}, while the second is the condition for equilibrium of the moments in directions 
normal to a{3}. The substitution 

a{s)xz(n)=y(n), a{3)~h= g 

converts this to the second equation of (2.6) in [4], which means that (1.5) contain the dy- 
namic equations for a simpler model [4] as a particular case. 

It is simplest to transfer to the scalar formulation of the two-dimensional kinematic 
and dynamic equations by means of the expansions 

u ~ U(N)a(N) , u[n  ] = U[nM]a[M] , U[~] = u[33]a[31 , 

v ~ V(N)a(N) , V[n ] ~ V[nM]a[M] , W[n ] ~ W[nM]a[M] , 
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x('O : z[nMJa[M], f = flMla[M), f(v) /(vM)a(M), 

z (n) : z[nM]a[M], h = h[M]a[M], h(v ) = h(vM)a (M) 

(the vector u[3] by definition is a one-component one in the rotated basis). 
formulate the following scalar kinematic and dynamic equations. 

Equations defining the components of the strain tensors in terms of those of the dis- 
placement and rotation vectors: 

(I  . 9 )  

From (1.9) we 

u[,,M ] == aLR(V(,~)u(U - -  W(nL) ) (a.~l~ + w,u~), 
1 / r .  • at,U,, .~'~ 

q. ,M] ..... 7- V(.;;(L)~." + z ( ~1 ("Mn-~- w(Mm), 

, , .13 , a33tt 
Wfnm] == @33 -r- u[33} ) a m . . r l n l ]  -t- bnm [33]' 

1 
u'[n3] --  OnU[33J, / - -  | - i  "~" V(L)t"(L), 

1 (L) 1 a r u (L)) 
U ' ( ; Y M )  = -  " / -  aNMLU - c ' ~  ( t : ( ; V ) I ' ( M )  -- f','M ( L )  " 

Dynamic equations relating the components of the force tensors: 

(I .10) 

V(n) zlrLM'] -l- .ML., ~[nh'J _~_ ._  ~..,a" q~z.J ~ / [M] O, 

�9 ML..  z[nHl z[3M] -I- h[M] : 0 ,  V(n)Z [nM] �9 ! a.. H t'[rtL] 

[(,':,M i "f:,m) i + o 

(I .11) 

The boundary conditions at the edge of the basis surface: 

[e(vn)z[nf'](af,.tr '--. E~(LM)) --/('oM)]Vo u(M) ~ O, 

[e(vM)z[nL](aLM !- W(LM) ) '--h(vM)]Vow(M)- O. 
(I  . 1 2 )  

An equation defining the surface density of the virtual strain energy and which pro- 
vides energy correspondence between the components of the strain and force tensors in the 

rotated basis: 

Wo = x[nMlvoU[nMlq-Zt33]VoU[331 + z[nMIVow[nM] �9 ( 1 . 1 3 )  

In formulating problems on the moments of the stresses, we use the equations for the 
strain compatibility [4] instead of kinematic equations (1.10) for the strain tensors U[~M] 
and V[nM] , as the former equations have the scalar representation 

V(~)~[~] _!_ ~ ~ul..,. ~ [~ l  ~..Ir  [ .LJ  O, 

V(n) u tnMj  - i "  (anL ~ u[nt.]) v [nRJ = O, ( I . 14 )  

~[nM] aLManm3v[mL], ~[nM] :=: LM rim3 
a a ~[mL]'  

We have used the following variation and differentiation rules for the vector and ten- 
sor fields in deriving (1.10)-(1.14): 

Voa[M] : Vo•  ], VoUINl --VoXU[N ] ~ a[MIVoU[NM] , 

V(,)a[M] : V[n ]><a[M], VoW[n] - -  v o X w [ n  ] : aIM]VoW[riM l, 

VoUl.,rn ] = 0, V(n)W(M) -= OnW(M ) -- C[.nMW(L), 

V(n)y[m~,~] -: Ony[mM ] _]_ ~..ql .[131] _~ C.nLyM [raL] 

and have introduced the following symbols: aNM, aNM L the metrical and discriminant tensors 
for the initial and rotated bases, bnm a tensor for the initial curvature of the basis sur- 
face, e(vn) = e(~)'a(n), cKn M the Christofelians of the second kind for the initial basis 
defined by 
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[-~ a k! (6natal + Omatn - -  Olanm ) 

33 M 

l aklb nl (M : 3, K =  k}, 

(0 {M=3, K=3}. 

[M=m, K=k}, 

Kinematic equations (1.11) have been formulated apart from an arbitrary rotation with 
respect to the vector a{3}; to eliminate this arbitrary element, one must make the rotation 
vector subject to a scalar condition. The simplest is the condition v'a(3), which rules out 
rigid rotation of the basis relative to the normal to the basal plane. For the same pur- 
pose one can use the conditions u[12] = u[21] or u[12] = 0 or u[il] = 0, but to realize 
these in a nonlinear treatment is much more complicated than the condition 

v-a(3 ) = v ( 3  ) = 0. (1 . 15) 

If necessary, the transition from the expansion in terms of the rotated basis to ex- 
pansions in terms of the initial and instantaneous bases can be provided from the following 
basis-transformation formulas: 

a(N ) = (aMN -~ W(MN))a [M], SiN} = (aNM 27 U[NM])a [M]. 

2. Formulation of the Two-Dimensional Definitive Equations. We assume that we know 
the equations defining the symmetrical three-dimensional stress tensor 

X (NM} : X(N) .A(  M} 

in terms of the symmetrical Green's three-dimensional strain tensor 

I 
U(NM} -- 2 (A~M]" U[N] + A~xI'U[MI+U[N]" UEM]), ( 2. 1 ) 

i.e., assume as known the three-dimensional definitive equations of the form 

X (NM> = X(NM~(U(LK~). (2.2) 

The three-dimensional tensor U(LK} is handled by means of (2.1), (1.3), (1.9), and 
(].10) to be expressed via the two-dimensional parameters U[ZK] , u[33], W[IK], so the bulk 
density of virtual strain energy defined by 

TWo = X (~vM} VoU(Ni~>, (2.3) 

can be represented as 

W 0 = X (NM} [(OU(N.M}/Ou[IIs L (OU(NM}/Ou[33])Vott[3a] ~" (OU(NM}/O~P[IK])VOW[IK]]. 

The surface density of the virtual strain energy is determined via the bulk density 
from 

b+ 

i w~ = -7 .1" woJdt8" 
b_ 

Comparison of this formula with (~.13) gives the two-dimensional definitive equations: 

b+ 

xUK] _ I y (OU(NM/OUuK]) x(NM}fdta ' 
] 

b_ 
b+ 

x[33]=4 ~ "~(NM}rdt (OY(nM/au~])  ~ . 3' 
b_ 

b+ 

z[tKj t y = =. (OU(NM/OWlzKI) x(NM>Jdt a. 
] 

(2.4) 

These equations close the system formulated in Sec. I of two-dimensional kinematic and 
dynamic equations (].]0)-(].]2) and (].15). The closed system is formed by the thirty-four 
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equations for the functions U(N), V(N), u[33], U[nM], W[nM], x [NM], z [nM]. Sixteen of these 
equations are algebraic. As a result of eliminating them, we get a system of 18 first-order 
differential equations for the functions U(N), V(n), u[33], x[nM], z[nM]. This system allows 
us to eliminate the functions x[nM], z[ nM] and loads to a system of six second-order equa- 
tions for the kinematically unknown parameters U(N), V(N), u[33]. The complete differential 
order of the decision system in each of the variables t m is 12, while the number of contour 
boundary conditions in (1.12) is six. 

3. Definition of the Three-Dimensional Stress and Strain Tensors. On solving the two- 
dimensional problem formulated by the closed system (1.10)-(1.12), (1.15), and (2.4), we 
determine the two-dimensional kinematic parameters: the displacement vector U(N ) and the 
rotation vector V(N ) (v(3) = 0), the first strain tensor U[NM] (U[3m] = 0), and the second 
strain tensor W[nM]. From (1.2), (1.3), and (2.1) one then derives the three-dimensional 
kinematic parameters: the displacement vector U(t M) and the symmetrical strain tensor U(NM} X 
(tL). Equations (2.2) define the symmetrical stress tensor x(NM#(tL). However, the deter- 
mination of the components X (N3} = X (3N# in this way cannot be considered as satisfactory, 
since it does not provide obedience to the conditions at the surfaces bounding the shell 
t3 = b-(t m) and t3 = b+(tm). More accurate determination of these components is provided 
by the following method, which is based on asymptotic analysis of the linear elasticity prob- 
lem for a shell [5]: we determine the cgmponents X (NM} from the coupling eouations together 
with the corresponding stress vectors xin) = x(nM}A{M}, while the vector X(3) = x(3M}A(M} 
is determined from dynamic equation (1.5) of [4] by quadrature with respect to the normal 
coordinate t3: 

where the vector f(3)(t m) is determined by subordinating the vector X(3)(tM) to a boundary 
condition at one of the outer surfaces [obedience to it at the other surface is provided by 
the equations (1.5)]. 

This gives the complete three-dimensional stress tensor. By inverting (2.2) one can 
derive the corresponding three-dimensional strain tensor. This completes the procedure for 
solving the nonlinear three-dimensional deformation problem. 

The nonlinear model represented by (1.10)-(1.12), (1.15), (2.4), and (3.1) is free from 
the three major disadvantages in the model of [I, 2]. 

Firstly, it enables one by solving the two-dimensional problem to obey the kinematic 
boundary condition U = 0 in the three-dimensional problem exactly at the end surface, whereas 
a contour condition was lacking for this in the two-dimensional treatment of [I, 2]. 

Secondly, equations (2.4) in the two-dimensional treatment are unambiguously formulated 
in terms of the definitive equations (2.2) for the three-dimensional one and therefore differ 
from [I, 2] in not containing undefined shear coefficients. 

Thirdly, the transverse components of the stress tensor are determined from (3.1) as 
single-valued functions of the normal coordinate that satisfy the boundary conditions at the 
outer surfaces, whereas in [I, 2] these components contain undefined functions of the normal 
coordinate as factors. 

4. Transfer to Physical Components. Let t N be the principal coordinate system of the 
shell, while u N and v N are the physical components of the displacement and rotation vectors 
in the initial basis, and UNM , VnM , WnM , XNM , ZnM are the physical components of the strain 
and force tensors in the rotated basis. 

The following groups of two-dimensional equations form a closed system for the physical 
components of the vectors and tensors defining the nonlinear strain in the shell with the 
kinematic relation of (1.1). 

Equations defining the components of the first strain tensor in terms of the displace- 
ments and rotations: 

U(nM) = [On(aMuM) ~ CnnMaL un ]/an aM, 

t t 
w(NM) = 7 e ~ L %  + ~ (~N% - ~NM%%), 
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i 
I =  I "q-"~VLV L, V 3 : 0 ,  ( 4 .  1) 

E q u a t i o n s  d e f i n i n g  t h e  c o m p o n e n t s  o f  t h e  b e n d i n g  t e n s o r  i n  t e r m s  o f  t h e  r o t a t i o n s :  

---- ~ ( q- -~eMLKVI~) (eJL q-w('rr)) '  ( 4 . 2 )  Vnj 7- V(nM) \ eML 

V(nM) = [On(a~;vM) - eLnMaLvL)/an aM, v 3 = O. 

E q u a t i o n s  d e f i n i n g  t h e  c o m p o n e n t s  o f  t h e  s e c o n d  s t r a i n  t e n s o r  i n  t e r m s  o f  t h e  c o m p o n e n t s  
of the bending tensor and the relative extension of the normal u33: 

w n ~  = e3M~VnZ(i + u3~) + [On(a~u3M) - -  CLnMaLU3L ]/an a M. ( 4 . 3 )  

The e q u a t i o n s  o f  m o t i o n  ( e q u i l i b r i u m ) :  

VnXnM -~- eMLKVnLXnK -~ fM : O, 

VnZnM -~ eMLKVnLZnK --  X3M "~- hM : O, (4.4) 

eMLh [(eNM -~- UNM)XNL "n t- (br~ M -[- WnM)ZnL ] = O. 

The e q u a t i o n  f o r  t h e  s u r f a c e  d e n s i t y  o f  t h e  v i r t u a l  s t r a i n  e n e r g y :  

w 0 =  X~MVoUn~ t + x33VoU33 + %uVow,~u. (4.5) 

The boundary conditions at the contour of the basis surface can have either a dynamic 
formulation 

e(vn)XnL(er, M -]- W(LM)) : /(vM), e(vn)Z nL(eLM + W(LM)) = 1,~(vM), ( 4 . 6 )  

when the stresses are given at the end surface, or a kinematic one 

V o u ~  = O, V0W~ ~-  V0(U3M - -  W(M3)) = -0, ( 4 . 7 )  

when the displacements are given at this surface, or else a mixed formulation, when the 
stresses are given on one part of that surface and the displacements on the other. 

Summation on the coupled subscripts is involved in (4.1)-(4.7); a n are the metrical Lam~ 
parameters for the undeformed basis surface, bnn are the principal curvatures of this, e(vn) 
are the direction cosines of the normal to the edge, f(vM) are the physical components of 
the principal vector and principal moment for the end load in the initial basis, fM and h M 
are the physical components of the principal vector and principal moment for the surface load 
in the rotated basis, eNM is the Kronecker tensor, eNM L is the Levi--Civita tensor, and 

a~ = l ,  hi2 = b~l : bn3 = O, u3n ---- O, cnn n ~ Onan/a n, c,.~2 = c12ft ---- O~aj./ax, 

Cmnz = anbnm/am, C21 ~ : c 2 2 1  = Ola2/a3, Cmn n = - -an  Om an/(ara)2(m :# n), 

C3nm --anarabnm' Czn3 7 O, 

- -  aM [ 0 .  ( ala2 ' ~ ala2 ] 

The p h y s i c a l  c o m p o n e n t s  o f  t h e  t h r e e - d i m e n s i o n a l  s t r e s s  a n d  s t r a i n  t e n s o r s  a r e  d e f i n e d  
i n  t h e  m e t r i c  o f  t h e  i n i t i a l  b a s i s  b y  

X N ~  = Az~4z~X(N~} , U~r~r = U(NM}/ANAM, 

where 

A 3 =  i ;  A n = anBn; B n = i -I-  bnnt ~. 

Then the physical tensors XNM and UNM remain symmetrical and correspond in energy to one 
another in the sense of (2.3). 

The three-dimensional strain tensor is determined from the two-dimensional ones by 

U _I - + + + +  z s;2 + 
(4.8) 
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With a known functional relationship between the XNM and ULK , one has the following 
linkage equations between the two-dimensional force and strain tensors: 

b+ 
P 

xlK = J (OUNM/OUlK) XNMB1B~dt 3, 

b+ 

x33 = ~ (OUNM/Ou33) X NMB1B2dt3 ' ( 4 . 9 )  
b_ 
b+ 

ZlK : S (OUNM/OWLK) XNMB1B2dt3" 
b_ 

E q u a t i o n s  ( 4 . 1 ) - ( 4 . 9 )  f o r m  a c l o s e d  s y s t e m  f o r  t h e  unknown f u n c t i o n s  UN, Vn, u z z ,  UnM, 
WnM, XNM, ZnM and  t h e i r  f i r s t - o r d e r  p a r t i a l  d e r i v a t i v e s .  The b e n d i n g  t e n s o r  VnM p l a y s  an  
auxiliary role in this system of abbreviated denotation for differential expression (4.2). 

When the tw~--dimensional system of (4.1)-(4.9) has been solved, the three-dimensional 
parameters of the state of stress and strain in the shell are determined from the scheme 
presented i~ Sec~ 3. 
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EXISTENCE OF SOLUTIONS IN IDEAL HENCKE PLASTICITY 

A. M. Khludnev UDC 539.214+539.374+517.9 

The existence of a weak solution in the theory of ideal Hencke plasticity is obtained 
only in the particular case of the Mises flow condition and under the assumption of isotropy 
of the material [I]. The strain vector is here found from a space conjugate to L~(~). The 
existence of a solution for an arbitrary flow condition and without the assumption of iso- 

3 2 tropy is proved in this paper. The displacement vector belongs to the space L / (~). 

The governing equations of the plasticity theory under consideration yield a represen- 
tation of the total strains in the form of a sum of elastic and plastic components 

8ij(U) = Cijhlt~kl -~ ~ij' ~' ] = ~[' 2, 3, (1)  

where the stresses do not exceed the yield point ~(o) ~< 0, while the plastic strains ~ij 
satisfy the inequality [I-3] 

~ij(~ij - -  aij  ) < 0 V~, @(~) ~ O. (2 )  

The equilibrium equations are satisfied in the domain ~R a 

--o~3,j = Ii, ~ = t, 2, 3. (3 )  
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